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ABSTRACT
ISS
BACKGROUND Acoramidis is a novel, high-affinity stabilizer that achieves $90% transthyretin (TTR) stabilization. The

phase 3 study, ATTRibute-CM (Efficacy and Safety of AG10 in Subjects With Transthyretin Amyloid Cardiomyopathy), met

its primary hierarchical efficacy endpoint with mortality, morbidity, and functional components at 30 months.

Stabilization of TTR (prealbumin) by acoramidis results in an immediate and sustained rise in serum transthyretin (sTTR)

levels, but the association between this pharmacodynamic effect and all-cause mortality (ACM) has not been elucidated.

OBJECTIVES The purpose of this study was to assess the prognostic implication of acoramidis-mediated early change

in sTTR and its relationship to ACM.

METHODS We evaluated sTTR levels in 557 participants with ATTR-CM from the ATTRibute-CM study population. For

the Kaplan-Meier overall survival assessment, univariate and multivariate modeling were used to evaluate factors

associated with ACM. Modeling and simulation analyses described acoramidis population pharmacokinetics.

RESULTS Treatment with acoramidis resulted in a sharp and significant early rise in sTTR levels (mean 9.1 mg/dL) within

28dayswhichwas sustained throughout the 30-month treatment period. Participantswith$20mg/dL sTTRat baseline had

significantly (P<0.0001) greater overall survival probability than thosewith<20mg/dL. Anearly increase in sTTR levels on

day 28of dosing (earlyDTTR)was associatedwith reducedACM in univariate analysis (HR: 0.96per 1mg/dL increase in early

DTTR; 95%CI: 0.93-0.98; P¼0.002). In themultivariate analysis, after adjusting for TTR variant status, baseline NewYork

Heart Association functional class, baseline National Amyloidosis Centre stage, and baseline sTTR level, early DTTR

remained independently associated with reduced ACM (P< 0.001). Bootstrap mediation analyses showed that early DTTR

fullymediates the effect of acoramidis treatment onACMprobability (average causalmediation effect¼�0.117;P¼0.002;

average direct effect ¼ 0.0366; P ¼ 0.448). Logistic modeling demonstrated that among participants treated with acor-

amidis, earlyDTTRwas associatedwith reduced ACM,whereas no such associationwas observed in participants treatedwith

placebo. For every 5 mg/dL increase in sTTR levels, a logistic model predicted a 31.6% relative reduction in odds of ACM.

CONCLUSIONS Acoramidis-mediated early DTTR is independently associated with improved survival after adjusting for

known predictors. This provides strong evidence for a direct association between a prompt and sustained increase

in sTTR upon initiation of treatment with acoramidis and survival. Early changes in sTTR could be used as a marker

of the degree of TTR stabilization. (Efficacy and Safety of AG10 in Subjects With Transthyretin Amyloid Cardio-

myopathy [ATTRibute-CM]; NCT03860935) (JACC. 2025;85:1911–1923) © 2025 The Authors. Published by Elsevier

on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

ACM = all-cause mortality

ATTR-CM = transthyretin

amyloid cardiomyopathy

ATTRv = transthyretin

amyloidosis variant

ATTRwt = transthyretin

amyloidosis wild-type

CVH = cardiovascular-related

hospitalization

eGFR = estimated glomerular

filtration rate

ITT = intent-to-treat

NAC = National Amyloidosis

Centre

NT-proBNP = N-terminal pro–

B-type natriuretic peptide

sTTR = serum transthyretin

TTR = transthyretin
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T ransthyretin amyloid cardiomyo-
pathy (ATTR-CM) is a progressive,
systemic, and ultimately fatal dis-

ease.1,2 Initiating events in the formation of
transthyretin (TTR) amyloid include the
destabilization and dissociation of the TTR
tetramer into its constituent monomers,
which are prone to misfolding.3 Circulating
TTR monomers aggregate into oligomeric,
amyloid precursors, which subsequently
organize into insoluble TTR amyloid fibrils
that can be identified histopathologically in
a range of organs and tissues, including the
heart.4-6 Progressive amyloid accumulation
in the heart manifests as arrhythmia and pro-
gressive heart failure.7-9 Median survival in
untreated patients typically ranges between
25 to 41 months, with longer survival in pa-
tients with wild-type transthyretin amyloid
cardiomyopathy (ATTRwt) as compared
with variant disease transthyretin amyloid cardiomy-
opathy (ATTRv).10-14 TTR stabilizers bind and stabi-
lize the TTR tetramer to prevent its dissociation into
amyloidogenic monomers and are an effective thera-
peutic drug class for the treatment of ATTR-CM.15 Sta-
bilization of TTR is associated with increases in serum
transthyretin (sTTR).16,17
SEE PAGE 1924
In the phase 3 ATTR-ACT (Tafamidis in Trans-
thyretin Cardiomyopathy Clinical Trial) of tafamidis,
the only other TTR stabilizer currently approved by the
U.S. Food and Drug Administration, improvements in
survival and reductions in cardiovascular-related
hospitalization were reported in patients with ATTR-
CM.18 In the pivotal phase 3 ATTRibute-CM (Efficacy
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Amyloid Cardiomyopathy; NCT03860935) study, sta-
bilization of TTR by acoramidis in participants with
ATTR-CM resulted in an early and sustained rise in
sTTR, but whether this increase in sTTR with
acoramidis is associated with survival independent
of other prognostic markers is not known. The un-
derlying therapeutic hypothesis for acoramidis is
that as a selective, high-affinity TTR stabilizer
designed to bind to sTTR deep within its thyroxine-
binding pocket, it achieves near-complete stabiliza-
tion of the tetrameric form of the protein, thereby
resulting in a marked decrease in the formation of
amyloidogenic monomers.15 A significantly better
outcome was observed in ATTRibute-CM favoring
acoramidis compared with placebo in the hierar-
chical endpoint that included all-cause mortality
(ACM), cardiovascular-related hospitalization (CVH),
change from baseline in N-terminal pro–B-type
natriuretic peptide (NT-proBNP), and 6-minute walk
distance at 30 months with >50% of win ratio ties
broken by ACM and CVH.15 Together, these data
suggest that measurement of sTTR levels after the
initiation of TTR stabilizing therapy may be an
informative biomarker of drug efficacy.

As different therapeutic agents become available,
routine evaluation of sTTR as a potential marker of
treatment response at an individual level, reflecting
degree of stabilization of the TTR protein and there-
fore reduction in new amyloid production, could
guide treatment decisions and optimize patient
management. We hypothesized that early increase in
sTTR could represent one such biomarker that may be
independently associated with ACM and sought to
test this among patients with ATTR-CM treated with
acoramidis.
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METHODS

STUDY DESIGN. The study design and primary and
secondary endpoints results for the ATTRibute-CM
study have been previously described by Gillmore
et al.15 Briefly, adults ($18 to #90 years of age) with
an established diagnosis of ATTR-CM with either the
TTRwt or a confirmed variant TTRv genotype were
enrolled in this multicenter, double-blind, placebo-
controlled study. Participants were randomized 2:1 to
receive acoramidis vs placebo. Participants were
permitted to initiate treatment with tafamidis (if
available) as a concomitant medication after they
completed 12 months of the blinded study treatment.
This study was conducted in accordance with the
International Conference on Harmonisation Good
Clinical Practice guidelines and the principles of the
Declaration of Helsinki. All participants provided
written informed consent, and the study was
approved by an ethics committee at each partici-
pating site.

POPULATION SELECTION. The population comprised
the 557 participants (among the 632 participants in
the intent-to-treat [ITT] population) who had sTTR
data available at baseline and day 28, the first time
point measured in ATTRibute-CM, and whose TTR
variant status (TTRwt or TTRv) was known.

INVESTIGATIONAL MEDICINAL PRODUCT. Acor-
amidis 712 mg (measured by its active moiety is
equivalent to 800 mg acoramidis hydrochloride) or
matching placebo (both film-coated tablets) were
provided to participants to self-administer orally
twice daily for 30 months.

SAMPLE COLLECTION. Blood samples were collected
at baseline (predose of investigational product) and
1 hour postdose at day 28 to analyze acoramidis
levels (pharmacokinetic analysis) and prealbumin
TTR concentrations (pharmacodynamic analysis).
Predose blood collection continued every 3 months
for a total of 30 months to continue to measure the
previously mentioned parameters. Tetrameric TTR
stabilization was assessed by sTTR levels using an
immunoturbidimetric method (Abbott ARCHITECT
system), which measures tetrameric TTR and was
interpreted in a blinded centralized manner by cen-
tral laboratory.

STATISTICAL ANALYSES. Kaplan-Meier overa l l
surv iva l ana lys i s . All analyses were performed us-
ing R Statistical Analysis Software (R Core Team
2014). Expected overall survival from baseline to
30 months into the study was estimated by the
Kaplan-Meier method. Participants were stratified
using a lower limit of 20 mg/dL sTTR ($20 mg/mL
and <20 mg/mL) and the overall survival for the 2
groups compared using a log-rank test.

Waterfa l l p lot ana lys i s . Waterfall plots were
generated of early DTTR for the overall population
with respect to treatment and for the acoramidis-
treated population with respect to clinically relevant
subgroups, including baseline sTTR levels, age, sex,
variant status, NYHA functional class, and National
Amyloidosis Centre (NAC) stage.

Population characteristics modeling and exposure-response
modeling for the probability of ACM. Continuous vari-
ables were presented as mean � SE or median
(Q1-Q3), and categorical variables were summarized
as counts and frequency percentages. Two-sided
P values were used throughout all analyses.

Univariate, Cox proportional hazards models were
first developed to identify factors that had statisti-
cally significant association with ACM through month
30. Parameters investigated in this model included
age, sex, TTR variant status (variant vs wild-type),
NYHA functional classification (I, II, III), NAC stage
(I, II, III),11 baseline sTTR levels, and change in TTR at
day 28 (early DTTR). Subsequently, a full multivariate
model included all univariate characteristics that
were associated with ACM with P < 0.05. As a sepa-
rate method of evaluating iteratively the statistical
significance of each univariate variable, stepwise co-
variate modeling was also performed to identify sig-
nificant covariates on top of the selected exposure
metric (early DTTR) that improved the model fit.
Improvement of model fitness was defined by the
likelihood ratio test statistic, which follows a chi-
square distribution, with P < 0.01 for the forward
addition and P < 0.001 for backward elimination.

Last, the same univariate model described in the
previous text was also repeated (alternate model)
using the same variables, but replacing NAC stage by
its individual components to distinctly visualize their
effects as estimated glomerular filtration rate (eGFR)
($45 mL/min/1.73 m2 and <45 mL/min/1.73 m2) and
NT-proBNP (<3,000 mg/mL and $3,000 mg/mL).
Subsequently, an alternate multivariate model
included all univariate characteristics that were
associated with ACM with P < 0.05.

Mediat ion ana lyses to invest igate mediat ion by
DTTR on the effect of acoramid is t reatment on
probab i l i ty of ACM through month 30. We used
causal mediation analysis to determine the signifi-
cance of DTTR mediating the relationship between
acoramidis treatment and the probability of ACM
through month 30 as formulated by a logistic regres-
sion model.19 Using the “mediation” package in R,
bootstrap simulations were performed with 1,000



TABLE 1 Population Baseline Characteristics

Placebo
(n ¼ 185)

Acoramidis
(n ¼ 372)

All
(N ¼ 557)

Age, y 78.0 (72.0-82.0) 78.0 (73.0-82.0) 78.0 (73.0-82.0)

Male 162 (87.6) 340 (91.4) 502 (90.1)

Variant status

Wild-type 168 (90.8) 338 (90.9) 506 (9)

Variant 17 (9.2) 34 (9.1) 51 (9.2)

NYHA functional class

I 15 (8.1) 47 (12.6) 62 (11.1)

II 142 (76.8) 258 (69.4) 400 (71.7)

III 28 (15.1) 67 (18.0) 96 (17.2)

NAC stage

I 110 (59.5) 211 (56.7) 321 (57.5)

II 48 (25.9) 110 (29.6) 159 (28.)

III 27 (14.6) 51 (13.7) 78 (14.0)

NT-proBNP, mg/dL 2,327 (1,142-3,595) 2,328 (1,330-3,968) 2,327 (1,285-3,803)

eGFR, mL/min/1.73 m2 60 (47-74) 61 (48-73) 61 (48-73)

TTR level, mg/dL

Total 23.4 � 0.5 23.2 � 0.3 23.3 � 0.3

Wild-type 24.1 � 0.4
168

23.8 � 0.3
338

23.9 � 0.3
506

Variant 16.8 � 1.3
17

17.7 � 0.9
34

17.4 � 0.7
51

Values are median (Q1-Q3), n (%), mean � SE, or n.

eGFR ¼ estimated glomerular filtration rate; NAC ¼ National Amyloidosis Centre; NT-pro-BNP ¼ N-terminal
pro–B-type natriuretic peptide; TTR ¼ transthyretin.
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Monte Carlo draws of the data set to compute both
the average causal mediation effect of DTTR on ACM
probability and the average direct effect of acoramidis
treatment independent of DTTR on ACM probability
and their respective levels of statistical significance;
95% CIs were computed using raw percentiles of the
bootstrapped statistics.
Logist i c regress ion model to invest igate the
assoc iat ion of ACM through month 30 with
DTTR. A logistic regression model explored the as-
sociation of DTTR and ACM probability in both the
full study population and in participants receiving
acoramidis only. Among the ATTRibute-CM ITT pop-
ulation,15 we constructed a multivariate logistic
regression model of ACM probability yielded by a
stepwise covariate modeling approach. Atop the
DTTR predictor, NAC stage and baseline sTTR were
selected as significant covariates. To assess the
goodness of fit for the multivariable ACM model, we
compared the uncertainty of model predictions with
the variability of the observed ACM data across par-
ticipants stratified by DTTR quartiles (Supplemental
Figure 1).

RESULTS

Of the 632 participants randomized in the study
(included in the ITT population), 557 participants for
whom TTR variant status was known had sTTR level
measurements at both baseline and day 28: 372 par-
ticipants received acoramidis and 185 placebo
(Supplemental Figure 2).

Demographics and clinical characteristics at base-
line were representative of a cohort of patients with
ATTR-CM in the contemporary era (Table 1). Partici-
pants enrolled in the study were older adults (median
age 78 years [Q1-Q3: 73-82 years]), and 90.7% had
TTRwt. Most had symptomatic heart failure (71.7%
and 17.2% NYHA functional class II and III, respec-
tively) and broadly distributed NAC stages I, II, and III
(57.5%, 28.5%, and 14.0%, respectively). sTTR levels
were in the low-normal range at baseline, with a
mean of 23.3 � 0.3 mg/dL (the core laboratory refer-
ence range is 20-40 mg/dL). Notably, these de-
mographic and clinical characteristics were well
matched between treatment groups.

Within 28 days, treatment with acoramidis resul-
ted in a prompt and significant early rise by a mean
9.1 � 0.3 mg/dL in sTTR levels (early DTTR) and this
elevated level was sustained throughout the
30-month treatment period (Figure 1A) (consistent
with presentation in Gillmore et al15). Among the
overall population, waterfall plot analysis demon-
strated a clear difference in early DTTR between
participants treated with acoramidis or placebo, with
the vast majority of participants treated with acor-
amidis experiencing an increase in early DTTR and
most participants treated with placebo experiencing a
decrease or minimal change in early DTTR (Figure 1B).
Treatment with placebo resulted in a slight decline in
early DTTR, mean �0.4 � 0.3 mg/dL. Compared with
participants with ATTRwt, those with ATTRv had a
lower baseline sTTR level (mean 17.7 � 0.9 mg/dL for
ATTRv vs 23.8 � 0.3 mg/mL for ATTRwt, respec-
tively), but experienced a greater early DTTR after
treatment with acoramidis (mean early DTTR 12.2 �
1.3 mg/mL for ATTRv vs 8.8 � 0.2 mg/dL for ATTRwt).
Among participants treated with acoramidis, variant
status, and subsequently, lower baseline sTTR levels,
were associated with increased early DTTR
(Supplemental Figures 3A and 3D, respectively).
Otherwise, the majority of participants treated with
acoramidis demonstrated increased early DTTR
across other clinical subgroups, including age, sex,
NYHA functional class, and NAC stage (Supplemental
Figures 3B, 3C, 3E, and 3F, respectively). The associ-
ation of baseline sTTR levels with probability of ACM
through month 30 indicates that participants who
had $20 mg/dL sTTR at baseline had significantly
better survival probability than those who
had <20 mg/dL sTTR (P < 0.0001) (Figure 2A). Among
the acoramidis-treated population, a stepwise
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FIGURE 1 Change From Baseline in sTTR Levels Through Month 30 and Waterfall Plot of Early DTTR From Baseline at Day 28 by

Treatment in the Overall Population
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increase in survival was observed with increasing
early DTTR quartile (P < 0.0001), consistent with the
overall treated population result demonstrating
improved outcomes over placebo (Figure 2B).

In univariate Cox regression modeling, variant
status, baseline NYHA functional class II and III, and
baseline NAC stages II and III, were significantly
associated with worse ACM, similar to what has
been observed in prior observational studies
(Figure 3A).20,21 Consistent with the probability of
overall survival, higher baseline sTTR (per 1 mg/dL
increase) and higher early DTTR (per 1 mg/dL in-
crease) were significantly associated with improved
ACM (HR: 0.91 and HR: 0.96, respectively).

In a full multivariate model that included all uni-
variate parameters found to be significantly associ-
ated with ACM (P < 0.05), higher early DTTR (per
1 mg/dL increase) continued to be significantly asso-
ciated with improved ACM after adjusting for variant
status, baseline NYHA functional class, NAC stage,



FIGURE 2 Survival by Baseline sTTR Level Through Month 30 in the Overall

Population and Survival by Early DTTR Quartiles Through Month 30 in the

Acoramidis-Treated Population
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and baseline sTTR levels (Figure 3B) (HR: 0.91 and HR:
0.94, respectively). In stepwise covariate modeling,
NAC stage, higher baseline sTTR level (per 1 mg/dL
increase), and early DTTR (per 1 mg/dL increase) also
remained significantly associated with ACM
(Figure 3C). Thus, the risk of mortality was dependent
not only on baseline sTTR and NAC stage at the start
of treatment with acoramidis, but also on the
magnitude of early DTTR increase.

In an alternate univariate and multivariate model,
even when considering baseline eGFR as a dichoto-
mous variable $45 mL/min/1.73 m2, in addition to
variant status, NYHA functional class, NT-proBNP,
baseline TTR, and early DTTR remained significantly
associated with a reduction in ACM (Supplemental
Figures 4A and 4B).

When pooling clinical parameters known to be
associated with ACM (including age, variant status,
baseline NYHA functional class, and baseline NAC
stage) and diuretic use, the addition of early DTTR
added significant value in evaluating ACM, with a
likelihood ratio test for model improvement of
P ¼ 0.0205 (Supplemental Figure 5).

Causal mediation analysis showed evidence of full
mediation of acoramidis treatment on ACM proba-
bility through month 30 by DTTR. Potential con-
founders accounted for include baseline TTR, NAC
stage, NYHA functional class, concomitant loop
diuretic use, age at baseline, and genetic variant
status. The bootstrap approach yielded an average
causal mediation effect of �0.117 (95% CI: �0.204
to �0.05) with P ¼ 0.002, while the average direct
effect for acoramidis treatment was calculated to be
0.0366 (95% CI: �0.0586 to 0.14) with P ¼ 0.448.
Taken together, these results suggest that the total
effect of acoramidis treatment on ACM probability
through month 30 is primarily the result of acor-
amidis treatment inducing early increases in sTTR
levels.

Logistic modeling of ACM as a function of early
DTTR in the overall ATTRibute-CM population (both
acoramidis- and placebo-treated participants)
showed an inverse relationship between the magni-
tude of the early DTTR increase and ACM; higher
early DTTR increase was associated with lower prob-
ability of ACM (Figure 4A). Among the participants
treated with acoramidis only, the model depicted that
increasing sTTR levels early (as a result of exposure to
acoramidis) had an even greater effect on decreasing
the probability of ACM (Figure 4B). The variance in
the 0-mg/dL to 10-mg/dL range in early DTTR was
appreciably wider in patients treated with acoramidis
only as compared with the overall population because
very few participants treated with acoramidis
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experienced a decline from baseline at day 28 in sTTR
levels. Among participants who received placebo, no
significant correlation was observed between DTTR
and ACM through month 30 (Figure 4C).

As a further test of the validity and reliability of the
model, we compared the final model with covariates
of day 28 sTTR, baseline sTTR, and NAC stage with
respect to the goodness of fit between the model
predicted simulated probability of ACM and the
actual observed proportion of ACM by quartile of
change from baseline in sTTR at day 28. The simu-
lated predictions from model uncertainty (boxes) and
the observed probabilities of death with 95% CI (error
bars) showed considerable overlap across all 4 quar-
tiles suggesting a very good model fit (Supplemental
Figure 1).

DISCUSSION

Using the data from the ATTRibute-CM study, we
show here that increased baseline TTR was associated
with improved survival and that early DTTR remained
independently associated with decreased mortality
(after adjusting for known predictors). For every
5 mg/dL increase in sTTR levels, a 31.6% relative
reduction in the odds of death through month 30 was
predicted by the logistic model and a 26.6% relative
reduction in the risk of death was predicted by the
Cox proportional hazards model (Central Illustration).
These results confirm earlier findings that showed
circulating TTR values lower than the normal limit
was associated with shorter median overall survival
(2.8 years for those with TTR <18 mg/dL vs 4.1 years
for those with TTR $18 mg/dL [HR: 2.3 (95% CI: 1.2-
4.3); P ¼ 0.03]).22

Enhanced stability of the TTR tetramer by acor-
amidis slows or halts the generation of toxic oligo-
meric TTR aggregates, thereby slowing their systemic
pathologic deposition as amyloid in different organs
and tissues. Stabilization of TTR has been assessed by
several ex vivo and in vitro assays (eg, fluorescence
probe exclusion, Western Blot, and sTTR levels).23-26

The acoramidis-dependent stabilization, as reflected
in an early increase in sTTR, results from a leftward
shift in the amyloidogenic cascade towards intact
tetrameric TTR, thereby increasing measured sTTR
levels, which can be interpreted as a biological surro-
gate for TTR stabilization in vivo.23-26 In the current
analysis, changes in early sTTR levels with acoramidis
were utilized as the in vivo correlate of TTR stability.
This is the first study to demonstrate the exposure-
response between acoramidis treatment and sTTR,
with early DTTR after dosing being a strong indepen-
dent predictor of survival in patients with ATTR-CM
treated with acoramidis. In the ATTRibute-CM study,
treatment with acoramidis, a near-complete ($90%)
TTR stabilizer, resulted in an early increase in sTTR by
a mean 9.1 � 0.3 mg/dL and by a median 9 mg/dL (Q1-
Q3: 6-12 mg/dL) representing a 44% and 40% increase
from baseline, respectively, that was sustained for the
duration of the study. Hierarchical outcomes assess-
ments showed that acoramidis treatment resulting in a
sTTR increase was associated with improved clinical
outcomes, including a 42% reduction in ACM and
recurrent CVH, a treatment effect that was evident as
early as 3 months into the study, a 50% reduction in
the annual frequency of CVH, as well as important
beneficial effects on NT-proBNP, 6-minute walk dis-
tance, and ACM.15,27 The results from this analysis
demonstrate that the early, substantial, and sustained
increase in sTTR achieved by near-complete TTR sta-
bilization can directly (or jointly with other clinical
assessments) predict a treatment-related improve-
ment in overall survival.

The therapeutic landscape of TTR-modifying ther-
apies within several drug classes is rapidly evolving,
and includes TTR stabilizers, TTR protein synthesis
suppressors, and TTR amyloid depleters. As a result,
there remains an unmet clinical need to identify
class-specific markers of treatment response. TTR
protein stabilizers for the treatment of ATTR-CM
work mechanistically by stabilization of the native,
circulating tetramer, thereby slowing its dissociation
into monomers that can generate toxic, oligomeric
TTR amyloid precursors (prefibrillar species). Greater
TTR stabilization manifests in vivo as increased sTTR
levels, and although stabilizers as a class are associ-
ated with increases in sTTR levels, the increase is
variable and tightly linked to the degree of stabiliza-
tion between the currently available agents. For
example, although the other widely approved TTR
stabilizer tafamidis has also been shown to lead to an
increase in sTTR levels, this increase did not show a
corresponding sTTR-mediated benefit in either NT-
proBNP levels or outcomes as measured by major
adverse cardiac events, as reported in data from small
cohorts.16,17 In the present study, the exposure-
response relationship between treatment with acor-
amidis and early DTTR was shown to be an important
independent predictor of survival in ATTR-CM.
However, these are population-level data and there
are limitations to applying these to individual-level
patients. The early and sustained increase in TTR
levels observed in this study may represent a novel
ATTR-CM disease-specific prognostic biomarker
unique to the stabilizer class that could further
inform optimal patient management. Routine clinical
measurement of sTTR levels may be useful to inform
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FIGURE 3 Forest Plots for ACM Through Month 30 Using Univariate, Multivariate, and Stepwise Covariate Modeling
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clinical practice in this therapeutic context.
By contrast, suppressors of TTR protein synthesis
work mechanistically by reducing circulating native
tetrameric TTR, thereby reducing the potential of
unstable TTR to dissociate and generate circulating
toxic oligomeric TTR amyloid precursors. Knockdown
of TTR protein synthesis results in a decrease in sTTR
levels, which converge on the common pathway that
generates decreased TTR oligomeric amyloid pre-
cursors. Although this may be an effective alternate
mechanism of treatment, the long-term safety of
different modes of suppressing TTR synthesis or the
adverse physiological consequences of chronic sup-
pression of tetrameric TTR remains unknown.

In the absence of a reliable clinical assay for
circulating oligomeric TTR amyloid precursors,
nonspecific indicators of disease progression and
treatment response have been developed as follows:
changes in NT-proBNP coupled with information on
changes in the choice or dosage of oral loop diuretics,
changes in troponin T and eGFR, changes in func-
tional capacity as measured by the 6-minute walk
test, and quality of life as measured by the Kansas
City Cardiomyopathy Questionnaire.13,28 Although
these are simple and widely available parameters to
assess, a notable limitation is the nonspecific nature
of these different blood biomarkers and other as-
sessments that share the final common pathway of
several mechanisms, including worsening in fluid
status, renal impairment, neurohormonal activations,
and comorbidities. None of these biomarkers and
functional tests track the specific pathways of new
amyloid production, which is modifiable with
treatment.

As the ATTR-CM pharmacopoeia continues to
expand, it is increasingly important that the rationale
and interventional strategy behind novel therapies be
fully communicated so that clinicians can make
informed decisions regarding which therapy to
choose for their individual patients. To that end, the
development of acoramidis has followed a logical
path from rational drug design through phase 1 and 2
studies to establish the right dose and generate
enough safety data to inform a favorable benefit-risk
relationship. Based on human genetic data already
available, acoramidis was designed to mimic the
disease-protective T119M variant in its TTR binding
characteristics resulting in near-complete stabiliza-
tion across the dosing interval. The importance of this
mechanistic feature is highlighted by the established
observation that in ATTRv, the more destabilizing a
pathological TTR variant, the more severe the clinical
phenotype as compared with ATTRwt. Large epide-
miologic data sets from Denmark have demonstrated
that plasma TTR tetramer destabilization among the
most destabilizing ATTRv was associated with wors-
ened ACM and CV mortality.29 However, despite a
worse phenotype and lower sTTR levels in ATTRv,
univariate and multivariate analyses show that DTTR
remains an important predictor of improved out-
comes and response to therapy.

The relationship between more effective reduction
in the generation of toxic TTR oligomers, whether by
stabilization or suppression of tetrameric TTR, has



FIGURE 4 Probability of ACM as a Function of Early DTTR Through Month 30 for Acoramidis and Placebo, Acoramidis Only, and
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been demonstrated in studies of patients with
ATTR-CM and ATTR polyneuropathy. This is also
reflected in greater proportional treatment effects in
ATTRv-CM vs ATTRwt-CM in ATTRibute-CM. That a
greater degree of stabilization leads to greater clinical
benefits was also apparent in the data from the tafa-
midis program. In the ATTR-ACT study, higher levels
of sTTR were observed with the 80-mg dose of tafa-
midis, which also demonstrated improved outcomes
as compared with the 20-mg dose.18,30 Although a
deeper understanding of the role of TTR in human
biology continues to be sought, the fact remains that
TTR is an abundant plasma protein carrier of
thyroxine and retinol. TTR has a relatively short
circulating half-life requiring a considerable expen-
diture of metabolic energy and is evolutionarily
conserved throughout vertebrate evolution.

We have previously reported the results of the
ATTRibute-CM study that documented the efficacy
and safety of acoramidis as assessed by the hierar-
chical analysis of ACM, CVH, NT-proBNP, and
6-minute walk distance. In this report, we take an
important next step that completes a chain of evi-
dence linking rational, genetic, and structural
biology-based drug design to near-complete TTR
stabilization, through to in vivo evidence of drug ef-
fect on sTTR and efficacy on clinical endpoints, and
now a direct, quantitative relationship between in-
creases in sTTR and their ability to predict survival
across the ATTRibute-CM study population.

STUDY LIMITATIONS. A potential source of bias in
this analysis is that it reflects the ATTRibute-CM
phase 3 clinical study population and may not be
fully representative of the general population. It also
only included participants (a majority but not all) for
whom sTTR levels were available at both baseline and
day 28. In addition, this study reports the effect on
ACM by early DTTR as a result of treatment with
acoramidis and this effect may not be generalizable to
other TTR stabilizers. It should be emphasized that
sTTR levels are challenging to interpret in the
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presence of combination stabilizer/TTR knockdown
therapy; no TTR knockdown agents were permitted
as concomitant medications in the ATTRibute-CM
study. Altogether, despite these limitations,
modeling was repeated with a variety of covariates
using different statistical methods to ensure repro-
ducibility of the findings reported.

CONCLUSIONS

In the landmark phase 3 ATTRibute-CM study, early
and sustained increase in TTR levels as a result of
treatment with acoramidis in the ATTRibute-CM
study independently predicted improved survival.
These results demonstrated that for every 5-mg/dL
increase in sTTR level, the Cox proportional hazards
model predicted a relative risk reduction of mortality
of 26.6% and the logistic model predicted a relative
reduction of 31.6% in odds of death through month
30. This is the first study to show an association be-
tween an increase in sTTR and survival with a TTR
stabilizer drug. Early and sustained increase in
TTR levels may represent a novel ATTR-CM
disease-specific prognostic biomarker that could
further inform optimal patient management.
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