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Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common
form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achon-
droplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed
in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3
revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimer-
ization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation
and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and
resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chon-
drocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone
growth in people with Ach and related conditions. Developmental Dynamics 246:291–309, 2017. VC 2016 Wiley Periodicals, Inc.
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Introduction

Achondroplasia (Ach) is the most common form of dwarfism in
humans. It occurs with a frequency of 1 in 15–25,000 and 80% of
cases are sporadic. Ach is an autosomal dominant genetic disease
that has 100% penetrance. The short stature in Ach mainly results
from shortening of the limbs with proximal segments affected
disproportionally, a phenotype referred as rhizomelia. The head is
large with frontal bossing and the midface is hypoplastic result-
ing from cartilage growth defects at the skull base. Narrowing of
the foramen magnum and spinal stenosis are relatively common
and often require neurosurgical corrections. The size of the trunk
is relatively normal but is often deformed by excessive lumbar
lordosis (Horton et al., 2007; Baujat et al., 2008).

Genetic linkage studies placed the Ach gene on the short arm
of chromosome 4 and mutation analysis identified an arginine to
glycine substitution at residue 380 (p.Gly380Arg) in fibroblast
growth factor receptor 3 (FGFR3) in almost all Ach patients in
Caucasian, African, and Asian populations (Rousseau et al., 1994;
Shiang et al., 1994). Expression of FGFR3 in growth plate chon-
drocytes suggested a direct causal relationship between mutation
in FGFR3 and growth plate function. Comparison of wild-type
and mutant FGFR3 showed that the mutant receptors had
increased signaling that could be further enhanced in the

presence of fibroblast growth factor (FGF) ligands (Naski et al.,
1996; Legeai-Mallet et al., 1998). This increased signaling may be
due in part to increased protein stability resulting from decreased
lysosomal degradation of the mutant receptor (Cho et al., 2004).

FGFs are signaling molecules that function during embryonic
and postnatal development. In the adult, FGFs have roles in
homeostasis and tissue repair (Ornitz and Itoh, 2015; Li et al.,
2016). Eighteen FGF ligands have the capacity to activate four
FGFR tyrosine kinase molecules. Alternative mRNA splicing of
immunoglobulin-like domain III of FGFRs 1–3 produce b and c
splice variants. In many tissues, b splice variants are expressed in
epithelial cell types and c splice variants are expressed in mesen-
chymal derived cells (Belov and Mohammadi, 2013; Ornitz and
Itoh, 2015; Li et al., 2016). These FGFR splice variants and cofac-
tor molecules, which include heparan sulfate proteoglycans and
Klotho-family proteins, also determine the strength and specific-
ity of ligand binding and receptor activation (Ornitz, 2000;
Polanska et al., 2009; Itoh et al., 2015). Binding to heparan
sulfate also serves to limit FGF diffusion through tissue (Sun
et al., 2016).

The identification of activating mutations in FGFR3 as the eti-
ology of Ach and the related milder form of dwarfism, Hch, the
severe and rare dwarfism, SADDAN, and the severe lethal chon-
drodysplasia, TD, immediately suggested that inhibitor therapies
could be developed to lessen the severity of these diseases.
Research over the past two decades has identified some of the
mechanisms used by FGFR3 to regulate chondrocyte proliferation
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and differentiation in the growth plate. Also identified are signal-
ing molecules and pathways that interact with FGFR3 that could
be exploited to counteract the effects of hyperactivated FGFR3.
Here, we review local signaling pathways acting on the growth
plate, the mechanisms used by FGFR3 and interacting signaling
pathways to regulate chondrogenesis, and the current efforts to
develop therapies to treat patients with Ach and Hch, and poten-
tially other forms of short-limbed dwarfism.

Growth Plate Structure and Function

Longitudinal bone growth is driven by the proliferation and dif-
ferentiation of chondrocytes in the growth plate, a structure
located between the metaphysis and epiphysis of long bones. The
definitive growth plate consists of three principal layers of cells
that temporally and spatially follow a highly regulated develop-
mental program (Fig. 1) (Caplan and Pechak, 1987; Hall and
Miyake, 1992; Hunziker, 1994; Olsen et al., 2000; Wagner and
Karsenty, 2001; Karsenty and Wagner, 2002; Ornitz and Marie,
2002, 2015). Reserve (or resting) zone chondrocytes serve as a
renewing population of progenitors that gives rise to proliferating
chondrocytes. Proliferating chondrocytes form clonal columns of
cells that differentiate into prehypertrophic and then hypertro-
phic chondrocytes. At the distal end of the growth plate, the
extracellular matrix produced by hypertrophic chondrocytes
begins to mineralize and the hypertrophic chondrocytes either die
or further differentiate into osteoblasts that populate the primary
spongiosa (Yang et al., 2014a,b; Yeung Tsang et al., 2014; Zhou
et al., 2014; Park et al., 2015). In this manner, the growth plate
functions as a template for trabecular (primary spongiosa or
spongy) bone.

The growth plate is surrounded by the perichondrium, a struc-
ture contiguous with the periosteum. The inner layer of the peri-
chondrium is populated by densely packed cells in the groove of
Ranvier and surrounding perichondrial ring of LaCroix (Ranvier,
1873, 1889; Shapiro et al., 1977). This structure is important for
regulating longitudinal bone growth and serves as a source of
progenitor cells that populate the periosteum and cortical bone
(Robinson et al., 1999; Fenichel et al., 2006; Karlsson et al.,
2009). The perichondrium thus serves as a template for the
formation of cortical bone.

Chondrocyte hypertrophy accounts for approximately 60% of
longitudinal bone growth (Hunziker et al., 1987; Hunziker and
Schenk, 1989; Hunziker, 1994; Wilsman et al., 1996; Noonan
et al., 1998). The rate of longitudinal bone growth is determined
by chondrocyte proliferation, the rate of hypertrophic differentia-
tion, the change in height of hypertrophic chondrocytes, and the
amount of extracellular matrix produced by hypertrophic chon-
drocytes (Breur et al., 1991; Wilsman et al., 1996). Although the
force driving bone elongation requires chondrocyte proliferation
and hypertrophy, longitudinal bone growth also requires elonga-
tion of the perichondrium/periosteum, which must be synchro-
nized with growth plate chondrogenesis.

Overview of Signaling Pathways Regulating
the Growth Plate

Proliferation and differentiation of chondrocytes in the growth
plate is regulated by locally acting secreted growth factors,
by endocrine factors, and by mechanical forces. Locally acting

signals include parathyroid hormone-like peptide (PTHLH or
PTHRP), Indian hedgehog (IHH), bone morphogenetic proteins
(BMPs), transforming growth factor b (TGFb), Wingless-type
MMTV integration site family members (WNTs), Notch,
C-natriuretic peptide (CNP encoded by Nccp), Insulin-like growth
factor 1 (IGF-1), epidermal growth factor (EGF), transforming
growth factor a (TGFa), vascular endothelial growth factor A
(VEGFA), and FGFs. The functions of these pathways in skeletal
growth and development have been extensively reviewed
(reviewed in Long and Ornitz, 2013; Lui et al., 2014; Kozhemya-
kina et al., 2015; Rosello-Diez and Joyner, 2015; Maes, 2016).
Endocrine factors include growth hormone (GH), thyroid hor-
mone (T3), parathyroid hormone (PTH), FGF23, and sex steroids
(reviewed in Perry et al., 2008; Rosello-Diez and Joyner, 2015;
Maes, 2016; Yakar and Isaksson, 2016). Mechanical forces
include those generated by hydrostatic forces, muscle contrac-
tion, and gravity. Hydrostatic compression of growth plate chon-
drocytes directly increases IHH signaling and chondrocyte
proliferation (Shao et al., 2012). Chondrocyte proliferation and
hypertrophy are also modulated by static and dynamic loading
(Villemure and Stokes, 2009). For example, in the absence of
muscle forces, proliferation decreased in embryonic chick growth
plate (Germiller and Goldstein, 1997) and in mice lacking skeletal
muscle, formation of the primary ossification center was delayed
(Nowlan et al., 2010).

Focusing on local signals, IHH, PTHLH, BMPs, Wnt, CNP, and
FGFs are central factors for growth plate regulation (Fig. 2). IHH
and PTHLH form a negative feedback loop that controls chondro-
cyte proliferation and differentiation. IHH is made by prehyper-
trophic and early hypertrophic chondrocytes. During postnatal
bone growth, after formation of the secondary ossification center,
IHH signals to its receptor, PTCH1, in reserve zone chondrocytes
to regulate expression of PTHLH (Chau et al., 2011). PTHLH, in
turn, signals to its receptor, PTH1R (PTH type 1 receptor) in pre-
hypertrophic chondrocytes and inhibits IHH expression and
chondrocyte hypertrophy. BMP2 and BMP4 are expressed in pre-
hypertrophic and hypertrophic chondrocytes and signal to
BMPR1a (BMP receptor type 1A) in proximal proliferating chon-
drocytes and prehypertrophic chondrocytes to regulate chondro-
cyte proliferation (Feng et al., 2003; Nilsson et al., 2007; Shu
et al., 2011). Inhibition of Wnt signaling by inactivating the
Wintless (Wls) gene in chondrocytes or osteoblasts results in
reduced chondrocyte hypertrophy and a smaller skeleton (Lu
et al., 2013). CNP is expressed in proliferating and prehypertro-
phic chondrocytes and signals to natriuretic peptide receptor 2
(NPR2 or NPR-B) in proliferating and prehypertrophic chondro-
cytes (Chusho et al., 2001; Potter et al., 2006). Like BMP, IHH,
PTHLH, and CNP promote chondrocyte proliferation (Karp et al.,
2000; Chusho et al., 2001; Long et al., 2001; Hirai et al., 2011).

Fgfr3 is expressed in proliferating and prehypertrophic chondro-
cytes during embryonic and postnatal development (Fig. 1C) (Peters
et al., 1993; Delezoide et al., 1998; Monsonego-Ornan et al., 2000;
Pandit et al., 2002; Barnard et al., 2005; Karuppaiah et al., 2016).
During establishment of the growth plate before formation of the
secondary ossification center, FGFR3 signaling promotes chondro-
cyte proliferation (Iwata et al., 2000, 2001; Havens et al., 2008).
However, during postnatal skeletal growth, FGFR3 signaling inhibits
chondrocyte proliferation and differentiation. The inhibition of
chondrogenesis by FGFR3 underlies the etiology of Ach and related
disorders in which activating mutations in FGFR3 suppress chon-
drogenesis during prepubertal skeletal growth (Colvin et al., 1996;
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Fig. 1. Histological organization of the postnatal growth plate. A: Histological section of the mouse proximal tibia showing growth plate chondro-
cytes at different stages of differentiation (resting, proliferating, prehypertrophic, and hypertrophic), perichondrium, and trabecular and cortical
bone. B: Schematic of the postnatal growth plate showing progression of chondrocyte development and juxtaposition to trabecular and cortical
bone, the groove of Ranvier and ring of LaCroix, and the secondary ossification center. C: Fgfr3 expression (in situ hybridization) in proliferating
and prehypertrophic chondrocytes and trabecular osteoblasts in a 21-day-old mouse tibia (image courtesy of K. Karuppaiah). SOC, secondary
ossification center; RC, reserve chondrocyte zone; PC, proliferating chondrocyte zone; PHC, prehypertrophic chondrocyte zone; HC, hypertrophic
chondrocyte zone; TB, trabecular bone; BM, bone marrow.
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Fig. 2. Signaling pathways in the postnatal growth plate. A: During endochondral bone development, FGF9 and FGF18, derived from the perichon-
drium and surrounding tissue, signal to FGFR3 in chondrocytes. The balance of chondrocyte proliferation and differentiation is controlled by crosstalk
of several signaling pathways. Expression of FGFR3 is enhanced by thyroid hormone (T3) and suppressed by PTHLH. FGFR3 signaling results in
increased expression of Snail1, which is required for activation of STAT1 and MAPK signaling. Signaling from PTHLH, IHH and BMPs antagonizes
the suppression of chondrocyte proliferation by FGFR3. Both FGFR3 and PTHLH function to suppress chondrocyte differentiation and antagonize the
action of Wnt signaling, which promotes differentiation. FGFR3 negatively regulates the autophagy protein, ATG5. B: Activation of downstream sig-
nals, PP2a and STAT1, regulate p107, p21Waf1/Cip1 activation, respectively, which function to suppress chondrocyte proliferation. Activation of the
MAPKs, ERK1, and ERK2, regulate Sox9 expression, which functions to suppress chondrocyte terminal differentiation and endochondral ossification.
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Deng et al., 1996; Naski et al., 1996, 1998; Chen et al., 1999; Li
et al., 1999; Pannier et al., 2010).

FGFR3 Signaling in the Growth Plate

Mice expressing the FGFR3(p.Gly374Arg) activating mutation,
which corresponds to the human FGFR3(p.Gly380Arg) mutation,
develop an Ach-like phenotype with reduced chondrocyte prolif-
eration and reduced hypertrophic differentiation and matrix
production (Naski et al., 1998; Wang et al., 1999). The intracellu-
lar signaling mechanisms that mediate these phenotypes
have revealed a complex network of signals that integrate FGFR3
signaling with several other signaling pathways.

FGFR signaling activates at least four downstream intracellular
signaling pathways including, MAPK, PI3K/AKT, PLCg, and
STATs (reviewed in Ornitz and Itoh, 2015; Brewer et al., 2016). In
the growth plate, FGFR3 activates STAT1 and the ERK1/2 and
p38 branches of the MAPK pathway (Fig. 2) (Su et al., 1997; Chen
et al., 1999, 2001; Li et al., 1999; Legeai-Mallet et al., 2004;
Raucci et al., 2004; de Frutos et al., 2007; Parafioriti et al., 2009).
Activation and overexpression of STAT1 is a strong candidate for
regulation (suppression) of chondrocyte proliferation downstream
of FGFR3, as inactivation of the Stat1 gene rescued the chondro-
cyte proliferation defect in FGFR3(p.Gly374Arg) mice. However,
these mice still developed an Ach-like phenotype, demonstrating
that STAT1 is not sufficient to mediate the overall growth inhibi-
tory effects of activated FGFR3 (Murakami et al., 2004).

In contrast, expression of an activated MEK1 allele in chondro-
cytes of mice that lack a functional Stat1 gene resulted in an
Ach-like phenotype with a prominently reduced hypertrophic
chondrocyte zone, but no decrease in chondrocyte proliferation.
This is consistent with chondrocyte hypertrophy contributing to
bone elongation to a greater extent than chondrocyte prolifera-
tion (Murakami et al., 2004). The separation between regulation
of proliferation and differentiation was further supported by
the observation that CNP signaling enhances bone growth by
increasing hypertrophic differentiation and matrix production
through inhibition of MAPK signaling (Yasoda et al., 2004).

SNAIL1 is a transcription factor that has been shown to regulate
chondrocyte differentiation through repression of Collagen II and
Aggrecan transcription (Seki et al., 2003). Several studies have
demonstrated that Snail1 functions downstream of FGFR3 and is
essential for FGFR3 regulation of both chondrocyte proliferation
and differentiation (de Frutos et al., 2007; Karuppaiah et al., 2016).
Forced activation of SNAIL1 in mice suppressed chondrocyte pro-
liferation and hypertrophy at late embryonic stages, a phenotype
that resembled Ach (de Frutos et al., 2007). Further analysis
revealed significantly reduced chondrocyte proliferation and a cor-
relation between Snail1 expression and nuclear localization of
STAT1. In addition to regulating STAT1, SNAIL1 activation also
increases phosphorylated Erk1/2 and may enhance its nuclear
localization (de Frutos et al., 2007; Smith et al., 2014). This func-
tion of SNAIL1 may be reinforced by a feed forward mechanism
whereby activation of ERK2 phosphorylates and stabilizes SNAIL1
and increases its nuclear localization (Zhang et al., 2013). Down-
stream of SNAIL1, STAT1 and ERK1/2 activation results in sup-
pression of chondrocyte proliferation and differentiation,
respectively. Suppression of proliferation is mediated by activation
of p107 (and p130) and expression of the cell cycle inhibitor,
p21Waf1/Cip1 (Fig. 2B) (Cobrinik et al., 1996; Su et al., 1997; Aikawa
et al., 2001; Laplantine et al., 2002; Dailey et al., 2003; Legeai-

Mallet et al., 2004; Kolupaeva et al., 2008, 2013). Chondrocyte dif-
ferentiation is mediated in part by ERK1/2 (MAPK) regulation of
Sox9, which must be suppressed to allow terminal hypertrophic
differentiation and endochondral ossification (Hattori et al., 2010;
Ikegami et al., 2011; Kim et al., 2011; Shung et al., 2012; Zhou
et al., 2015b).

FGFR3 signaling also affects surrounding bone, directly and
through the regulation of other growth factor signaling pathways
in chondrocytes. For example, inactivation of FGFR3 globally or
in chondrocytes results in increased expression of Ihh, Bmps 2,
4, 7, Tgfb1, and Wnt4, and decreased expression of Noggin,
resulting in increased bone mass (Naski et al., 1998; Zhou et al.,
2015a; Wen et al., 2016), while activation of FGFR3 in chondro-
cytes results in decreased Ihh, BMP4, and Pthlh and leads to
decreased bone mass (Fig. 2A) (Naski et al., 1998; Chen et al.,
2001; Su et al., 2010; Mugniery et al., 2012; Qi et al., 2014).
Direct effects of FGFR3 on osteoblasts are supported by condi-
tional knockouts of Fgfr3 in osteoblasts (OC-Cre), which result in
impaired bone formation and remodeling (Xie et al., 2014). The
function of osteoblasts is coupled to osteoclasts during bone for-
mation and resorption, and recently it was demonstrated that
Fgfr3 inactivation in osteoclasts (LysM-Cre) impaired bone
resorption (Su et al., 2016).

Regulation of FGFR3 Expression

FGFR3 signaling is controlled in part by regulating the level of
Fgfr3 mRNA and protein expression. Activating mutations in
FGFR3 lead to increased FGFR3 protein expression, possibly
through reduced receptor internalization and degradation (Cho
et al., 2004; Legeai-Mallet et al., 2004; Qi et al., 2014). Paracrine
and endocrine signals also regulate Fgfr3 expression in growth
plate chondrocytes. These signals include FGF, thyroid hormone
(T3), and PTHLH. Overexpression of FGF9 in the perichondrium/
periosteum activates a feed forward pathway that increases Fgfr3
expression and suppresses chondrocyte proliferation (Karuppaiah
et al., 2016).

Mice lacking thyroid receptor a (TRao/o), which is expressed in
skeletal tissues, have skeletal hypothyroidism (reduced hypertro-
phic chondrocyte differentiation, delayed ossification, disorga-
nized growth plate structure) (Gauthier et al., 2001). Mice with a
mutant thyroid hormone receptor b (TRbpv/pv), which is expressed
in the pituitary gland, have increased expression of TSH and
develop thyrotoxicosis (elevated levels of T3 and T4) (O’Shea
et al., 2003). These mice have reduced linear growth, advanced
endochondral ossification, and craniosynostosis. These pheno-
types can be explained in part through regulation of Fgfr3 in
chondrocytes (Bassett and Williams, 2016). TRao/o mice have
reduced levels of Fgfr3 expression in growth plate chondrocytes,
while hyperthyroid TRbpv/pv mice showed increased levels of
Fgfr3 in growth plate chondrocytes (Barnard et al., 2005). This
signaling could be direct (Fig. 2), as analysis of the Fgfr3 promot-
er identified a putative thyroid hormone response element
(McEwen et al., 1999). Additionally, treatment of cultured chon-
drocytes with T3 induced the expression of Fgfr3 (Barnard et al.,
2005).

PTHLH signaling may directly regulate Fgfr3 by controlling
a transcriptional regulatory element, which can be repressed
by PTH through binding to a cAMP response element in the
Fgfr3 promoter (McEwen et al., 1999). Treatment of primary
chondrocytes with PTH(1-34) suppressed expression of Fgfr3
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(Zhang et al., 2016) as did injection of PTH(1-34) in vivo
(Karuppaiah et al., 2016). Although not investigated in chon-
drocytes, Fgfr3 expression was induced by hypoxia in a tran-
scriptional and HIF1a-dependent manner in bladder cancer
cells (Blick et al., 2013). Similar regulation could occur in the
relatively hypoxic growth plate. Additionally, BMP2 induced
expression of Fgfr3 through chromatin remodeling and SP1
sites in the Fgfr3 promoter (McEwen and Ornitz, 1998; Sun
et al., 2009).

FGF Ligands that Regulate Endochondral
Bone Growth

Several FGFs are expressed in the growth plate and in the sur-
rounding perichondrium and periosteum. During development,
Fgf2, Fgf9, and Fgf18 are expressed in the perichondrium/perios-
teum and presumptive joint space and have been shown to regu-
late bone growth in vivo (Gonzalez et al., 1996; Liu et al., 2002;
Ohbayashi et al., 2002; Hung et al., 2007; Reinhold and Naski,
2007). Fgf1, Fgf2, Fgf17, and Fgf19 are present in growth plate
chondrocytes (Logan et al., 1991; Krejci et al., 2007), but of these,
only Fgf2 has been shown to regulate bone growth in vivo. Mice
congenitally lacking Fgf2 (Fgf2-/- mice) show normal growth
plate morphology and function but have decreased bone mass,
primarily seen in trabecular bone (Montero et al., 2000).

Mice that congenitally lack Fgf9 (Fgf9-/- mice) have decreased
growth of long bones that affects the proximal skeletal elements
to a greater extent than the distal elements (rhizomelia) (Hung
et al., 2007). Mice that lack Fgf18 (Fgf18-/-) show a more uniform
decrease in skeletal growth (Liu et al., 2007). For both of these
ligands, chondrocyte proliferation is decreased, which is consis-
tent with observed phenotypes in Fgfr3-/- mice during embryonic
stages of bone growth, where FGFR3 signaling functions to pro-
mote chondrocyte proliferation (Iwata et al., 2000, 2001; Hung
et al., 2007; Liu et al., 2007). Mice that lack both Fgf9 and Fgf18
have a severe defect in bone growth that affects all skeletal ele-
ments (Hung et al., 2016). At late stages of development, Fgf9-/-

and Fgf18-/- mice show an increase in the size of the hypertrophic
chondrocyte zone. This phenotype closely matches that of
Fgfr3-/- mice, which is consistent with FGFR3 functioning to
suppress chondrocyte proliferation and differentiation at late
stages of development and in the postnatal growth plate (Liu
et al., 2002; Ohbayashi et al., 2002; Hung et al., 2007).

Autophagy in the Growth Plate

Macroautophagy is a lysosomal-dependant degradation process
that maintains cellular homeostasis in response to cellular stress.
The initiation of autophagosome formation requires the interac-
tions of a subset of at least 18 autophagy related genes (Atg)
(Feng et al., 2014). During growth plate development, autophagy
regulates the maturation and the hypertrophy of chondrocytes
(Shapiro et al., 2014). Autophagy is protective in articular carti-
lage and mice lacking Atg5 in chondrocytes develop age-related
osteoarthritis (Bouderlique et al., 2016).

Genome-wide association studies have identified potential
links between autophagy and human stature (Pan et al., 2010).
Targeted genetic ablations of autophagy-related genes, Atg5 or
Atg7, in chondrocytes results in mild growth retardation with
reduced chondrocyte proliferation (Vuppalapati et al., 2015) and

impairment of the secretion of collagen type 2, a major compo-
nent of the cartilage extracellular matrix (Cinque et al., 2015).

A role for autophagy in FGF-regulation of chondrogenesis has
recently been identified by several groups. Mice haploinsufficient
or null for Fgf18 exhibited a low level of autophagy in chondro-
cytes resulting in decreased levels of Col2 in the growth plate (Cin-
que et al., 2015). Of interest, this phenotype was attributed to
signaling through FGFR4 rather than FGFR3. In contrast, Wang
et al. showed that mice lacking Fgfr3 in growth plate chondrocytes
had increased autophagy and mice expressing a constitutively
active FGFR3 had reduced autophagy (Wang et al., 2015).

Diseases Caused by Mutations in FGFR3

Achondroplasia

The diagnosis of Ach is usually made at birth, but may be sus-
pected based on late prenatal ultrasound images. Eighty percent
of cases of Ach arise as sporadic mutations in FGFR3. Ach is the
most frequent form of dwarfism, characterized by short long
bones, disproportional shortening of the proximal skeletal seg-
ments (rhizomelia), impaired elbow extension, tibial bowing,
exaggerated lumbar lordosis, shortening of the vertebral pedicles
and narrowing of the lumbar interpedicular distance, shortening
of the femoral head, macrocephaly, midface hypoplasia, frontal
bossing, hearing loss, and a reduced size of the foramen magnum
(Fig. 3) (Horton et al., 2007; Baujat et al., 2008). Ach can also
include partial premature fusion of the coronal and sagittal
sutures, suggesting a role for FGFR3 in membranous ossification
(Twigg et al., 2009; Di Rocco et al., 2014). Ach is a progressive
disease, and the severity of the phenotype is correlated with age.
For example, with age, there is progressive disorganization of the
skeletal growth plate (Legeai-Mallet et al., 2004). Bone age (an
assessment of skeletal maturation based on comparisons of radio-
graphs of the wrist, hand, and fingers with standardized radio-
graphs) is delayed in the newborn Ach patient; however, during
adolescence bone maturation accelerates and the bone age
approaches the chronological age (Pannier et al., 2010). Ach
patients have a significant kyphosis that leads to a progressive
deformity. With age, Ach patients develop an excessive lumbar
lordosis. A major complication, narrowing of the spinal canal due
to degenerative changes of the spinal canal, can lead to nerve
root compression and often requires surgical decompression
(Baujat et al., 2008).

The Ach gene locus was mapped to FGFR3 in 1994 (Le Merrer
et al., 1994; Velinov et al., 1994). Over 97% of cases result from an
autosomal dominant missense mutation (p.Gly380Arg) localized in
the transmembrane domain of FGFR3 (Fig. 4) (Shiang et al., 1994;
Wilkin et al., 1998; Vajo et al., 2000). Ach patients that do not
have a p.Gly380Arg mutation are usually found to have other less
common FGFR3 mutations such as p.Ser217Cys, Ser279Cys,
p.Ser344Cys and p.Gly375Cys (Superti-Furga et al., 1995; Zhang
et al., 2007; Xue et al., 2014; Takagi et al., 2015). These less com-
mon mutations in FGFR3, that add a cysteine residue, are likely to
result in constitutive receptor activation, similar to that seen in
TDI; however, their mechanism of action will need to be further
investigated. Ach mutations show a penetrance of 100 percent.
Rare homozygous cases of Ach are lethal with phenotypes resem-
bling that of TD (Stanescu et al., 1990; Tavormina et al., 1995).

Mutation analysis of Ach patients showed that nearly all muta-
tions arise on the paternal chromosome. The paternal origin of
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Ach mutations in FGFR3 correlates with advanced paternal age
in all cases examined (Wilkin et al., 1998). The paternal origin of
activating mutations in FGF receptors is attributed to positive
selection and clonal expansion of spermatogonial stem cells with
age (Goriely and Wilkie, 2012; Shinde et al., 2013).

Mutations causing Ach result in activation of FGFR3 and its
signaling pathways that can be further enhanced in the presence
of FGF ligands (Naski et al., 1996; Webster and Donoghue, 1996;
Komla-Ebri et al., 2016). Increased activity may result from
impaired receptor internalization and degradation (Monsonego-
Ornan et al., 2000; Cho et al., 2004). Biochemical analysis shows
that the Ach mutations increase the efficiency of receptor phos-
phorylation in the absence of ligand (He et al., 2012). Ach pheno-
types have been modeled in mice by expressing the mutant Fgfr3
in chondrocytes or directly introducing Ach mutations into the
Fgfr3 gene (Naski et al., 1998; Chen et al., 1999; Wang et al.,
1999; Pannier et al., 2009a).

Thanatophoric Dysplasia Type I and II

Thanatophoric dysplasia type I and II (TDI and TDII) are sporadic
more severe forms of dwarfism that are usually lethal. TD is char-
acterized by short limbs (Fig. 3), narrow thorax with short ribs,
macrocephaly, and brain malformation with temporal lobe
enlargement (Rousseau et al., 1995; Tavormina et al., 1995).

The radiologic features that distinguish TDII are the frequent
observation of straight femurs and a cloverleaf skull.

TDI and TDII are attributed to various mutations in FGFR3 (Fig. 4).
The most frequent (75%) TDI missense mutations introduce a cyste-
ine residue in the extracellular (p.Arg248Cys, p.Ser249Cys) or trans-
membrane (p.Tyr373Cys, p.Gly370Cys) domain of the receptor. Less
commonly, mutations that introduce a stop codon (p.X807Ser,
X807Arg, X807Cys) have been observed in 20% of case of TDI
(Rousseau et al., 1995). TDII results from an FGFR3 mutation
(p.Lys650Glu) localized in the tyrosine kinase domain of the receptor.
Both TDI and TDII mutations result in ligand-independent constitu-
tive activation of the receptor (Naski et al., 1996); however, only the
TDII mutation impedes complete maturation of FGFR3 and induces
premature phosphorylation of the receptor (Lievens and Liboi, 2003;
Gibbs and Legeai-Mallet, 2007). Analysis of downstream signaling
showed that the TDI mutation strongly activates ERK1/2 and STAT1
(Legeai-Mallet et al., 2004; Krejci et al., 2008). Mouse models
expressing TDI and TDII mutations all display a severe dwarf pheno-
type (Li et al., 1999; Iwata et al., 2001; Pannier et al., 2009b).

Hypochondroplasia

Hypochondroplasia (Hch) is a relatively mild form of dwarfism that
shares many phenotypic features with Ach. Most cases of Hch
develop as de novo mutations in the FGFR3 gene, but in some cases
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Fig. 3. Clinical features of skeletal disorders resulting from activating mutations in FGFR3. A: The head of a patient with Ach is characterized by
macrocephaly, frontal bossing (arrow), and hypoplasia of the midface. B: MRI showing the cervicomedullary compression at the foramen magnum
(arrow). C: Rhizomelic short stature (arrow) of a patient with Ach (image courtesy of Dr. G. Finidori). D: X-rays of the lower limb (femur and tibia) of
a 24-week-old normal fetus (control) and fetuses with TDI (p.Arg248Cyst) and TDII (p.Lys650Glu) FGFR3 mutations. Note the short and curved
femur compared with the age-matched control.
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there is a positive family history for this condition. In the sporadic
cases, the diagnosis of this milder form of dwarfism is frequently
not made at birth but later during childhood when an inflection in
the growth curve is observed. Hch is caused by the FGFR3 missense
mutation, p.Asn540Lys, localized in tyrosine kinase domain I and is
the most common Hch mutation, occurring in �60% of cases (Fig.
4). Other less common missense mutations have been identified in
the tyrosine kinase domain II of FGFR3 (e.g. p.Lys650Asn) (Bellus
et al., 1995; Tavormina et al., 1995; Bonaventure et al., 1996; Bellus
et al., 2000) and in the extracellular domain (Heuertz et al., 2006).

In vitro analyses of the p.Lys650Asn mutation showed weak activa-
tion of the FGFR3 kinase domain (Lievens et al., 2004; Gibbs and
Legeai-Mallet, 2007). Analysis of the p.Asn540Lys mutation showed
activation of ERK1/2 but not STAT1 (Krejci et al., 2008).

SADDAN Syndrome and Platyspondylic Lethal Skeletal
Dysplasia, San Diego Type (PLSD-SD)

Severe achondroplasia with developmental delay and acanthosis
nigricans (SADDAN) and platyspondylic lethal skeletal dysplasia,
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Fig. 4. The mutational spectrum of FGFR3. The relative location of gain-of-function and loss-of-function mutations causing genetic skeletal dis-
ease in humans is shown distributed over the entire FGFR3 coding region. Abbreviations for different types of genetic diseases are shown. FGF
ligands are shown in blue and heparan sulfate co-factors are shown in green. Some of the mutations in FGFR3 change the affinity or specificity of
the receptor for different FGF ligands, while others affect tyrosine kinase activity or receptor internalization and degradation. ECD, extracellular
domain; ICD, intracellular domain; HS, heparan sulfate; I, II, III, immunoglobulin-like domains; TK, tyrosine kinase domains; TM, transmembrane
domain (red).
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San Diego type (PLSD-SD) are very rare lethal chondrodysplasias
that are accompanied by acanthosis nigricans (hyperpigmenta-
tion and thickening of the skin), and brain malformations. These
syndromes and classical TDI are all caused by a p.Lys650Met
mutation in FGFR3 (Fig. 4) (Bellus et al., 1999; Brodie et al.,
1999; Tavormina et al., 1999; Farmakis et al., 2015). Analysis of
the p.Lys650Met mutation showed strong activation of ERK1/2
and STAT1 (Krejci et al., 2008). A mouse model expressing the
SADDAN mutation displays a phenotype similar to the human
pathology in SADDAN syndrome (Iwata et al., 2001).

Proportionate Short Stature

A dominant mutation (p.Met528Ile) that causes proportionate
short stature (PSS) was identified in FGFR3 (Fig. 4) (Kant et al.,
2015). Functional studies suggest that this mutation is activating,
similar to that of the p.Gly380Arg mutation that causes Ach;
however, the mechanisms that determine proportionate vs. rhizo-
melic limb shortening are not known.

Patients With Tall Stature

Rare pathogenic FGFR3 mutations cause tall stature. CATSHL
(camptodactyly, tall stature, and hearing loss) syndrome results
from a dominant FGFR3 loss of function mutation (p.Arg621His)
(Fig. 4). These patients are characterized by skeletal overgrowth,
sensorineural hearing loss and microcephaly (Toydemir et al.,
2006; Makrythanasis et al., 2014; Escobar et al., 2016). It is
hypothesized that this mutation results in loss of function or
expression of a dominant negative protein. A rare recessive
FGFR3 loss of function mutation (p.Thr546Lys) was also reported
in patients that exhibited tall stature, microcephaly, moderate
hearing loss, and intellectual disability (Makrythanasis et al.,
2014).

These phenotypes are consitent with those of mice that lack
Fgfr3, which show skeletal overgrowth (Colvin et al., 1996; Deng
et al., 1996; Eswarakumar and Schlessinger, 2007) and deafness
(Colvin et al., 1996), and sheep with a recessive mutation in
FGFR3 (p.Val700Glu) that results in spider lamb syndrome (SLS),
characterized by long limbs, kyphoscoliosis, malformed ribs and
sternebrae, Roman nose, lack of body fat, and muscular atrophy
(Beever et al., 2006). Heterozygous sheep with this mutation
show mild increased skeletal growth (Smith et al., 2006).

Craniosynostosis and Hearing Loss Associated With
FGFR3 Mutations

Pathogenic dominant FGFR3 mutations also cause craniosynosto-
sis (premature fusion of cranial sutures). Muenke syndrome (MS)
is the most common craniosynostosis syndrome (Sabatino et al.,
2004). This autosomal dominant disorder is characterized by pre-
mature fusion of the coronal sutures, hearing loss, developmental
delay and intellectual disability (Kruszka et al., 2016). Muenke
syndrome is caused by a missense mutation (p.Pro250Arg) local-
ized in the extracellular domain of FGFR3 in the linker between
immunoglobulin-like domains II and III (Fig. 4) (Bellus et al.,
1996; Gripp et al., 1998). Of interest, this mutation changes the
specificity of both the FGFR3b and FGFR3c splice variants, allow-
ing activation by FGF10 (Mansour et al., 2013). This is similar to
the effects of corresponding mutations in FGFR2c that cause
Apert syndrome (Yu et al., 2000). Paternal origin associated with

advanced paternal age is also reported in Muenke syndrome
(Rannan-Eliya et al., 2004). Mouse models with the p.Pro244Arg
mutation also display craniosynostosis and hearing loss (Mansour
et al., 2009, 2013; Twigg et al., 2009; Laurita et al., 2011; Nah
et al., 2012).

Crouzon syndrome associated with acanthosis nigricans (CAN)
is a rare syndrome characterized by craniosynostoses, ocular pto-
sis, midface hypoplasia and hyperkeratosis, and hyperpigmenta-
tion of the skin. Patients with this syndrome carry a dominant
missense mutation (p.Ala391Glu) in FGFR3 (Meyers et al., 1995;
Wilkes et al., 1996). This mutation is localized in the transmem-
brane domain of the receptor distal to the recurrent Ach mutation
(p.Gly380Arg). Differences in phenotypes (craniosynostoses vs.
chondrodysplasia) of the p.Ala391Glu and p.Gly380Arg muta-
tions may be attributed to relative increased formation of FGFR3
heterodimers with the p.Ala391Glu mutation (He et al., 2011).

Therapeutic Approaches

In 1994, the chondrodysplasia research field made significant
progress with the discovery that activating mutations in the
FGFR3 gene are the etiology of a broad clinical spectrum of
chondrodysplasias, including Hch, Ach, SADDAN, and TD.
Potential therapeutic approaches to treat these conditions have
been emerging over the past decade. To be effective, therapies for
Ach need to be administered within a time window extending
from birth to puberty (Fig. 5A).

Surgical Approaches

Surgical intervention is a common form of therapy for both pro-
portional and disproportional dwarfism (e.g., Ach, Hch). Surgical
limb lengthening classically uses the Ilizerov procedure in which
cortical long bones are cut (osteotomy), external fixators are
placed proximal and distal to the osteotomy and distraction is
applied gradually over many months to extend bone length
(Paley, 1988; Schiedel and Rodl, 2012). The average length gained
is �20.5 cm after multiple procedures (applied to the femurs and
tibias) (Kim et al., 2014; Donaldson et al., 2015). This surgical
treatment allows functional gains and quality of life improve-
ments. However, this procedure is painful and is associated with
complications that include infection, muscle contractures, and
increased risk of fracture (Paley, 1990; Donaldson et al., 2015).
Recent innovations, such as the use of intramedullary fixation
(Fig. 5B), may improve outcome and lessen risk (Paley, 2015).
Limb lengthening, involving the surgical breaking of a bone, fixa-
tion, and distraction during the healing process remains contro-
versial and is associated with a high degree of risk. A pre-
operative psychological assessment is required before surgery to
evaluate the high risk of complications vs. the improvement of
short stature. In the future, the combination of surgical limb
lengthening with pharmacological strategies (see below) could
further improve outcomes.

Approaches to Treat Hypochondroplasia

The primary therapies that are proposed to patients with Hch
include treatment with recombinant human growth hormone
(r-hGH) or surgical intervention (see surgical approaches section)
(Tanaka et al., 2003; Kim et al., 2014; Burghardt et al., 2015;
Massart et al., 2015). R-hGH is indicated for the treatment of
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Fig. 5. Therapeutic approaches for FGFR3-related disorders. A: Schematic representation of key milestones in bone and growth plate activity dur-
ing skeletal development. The location of the active growth plates and bone sutures are shown in red, according to age. As skeletal development
progresses, growth plates and skull sutures fuse (green). B: Tibia intramedullary lengthening in a 16-year-old girl with Ach using the PRECICE system
(image courtesy of Dr. D. Paley). C: Schematic representation of therapeutic approaches for Ach that are currently being evaluated. (1) Soluble
FGFR3 bind and sequester FGF ligands. (2) Anti-FGFR3 antibodies block ligand binding to the receptor and subsequent downstream signaling path-
ways. (3) Tyrosine kinase inhibitors block receptor phosphorylation of substrates. (4) Stabilized CNP (BMN-111) antagonizes RAF activation through
the activation of the natriuretic peptide receptor 2 (NPR2), a guanylyl cyclase. cGMP activates cyclic GMP-dependent protein kinase II (cGKII) and
p38 MAPK. (5) Meclozine, an anti-emetic drug, suppresses high ERK1/2 phosphorylation. (6) PTH(1-34) treatment leads to increased chondrocyte
proliferation and suppression of Fgfr3 expression. (7) Indirect effect of r-hGH on bone growth (8) Statin promotes degradation of FGFR3.
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short stature in children with other skeletal dysplasias, such as
L�eri-Weill dyschondrosteosis and idiopathic short stature, which
are associated with mutations in the SHOX gene (Fukami et al.,
2016). In clinical trials, treatment with r-hGH improved growth
velocity in these patients (Blum et al., 2007, 2013). R-hGH thera-
py is also effective for Hch patients and the benefits of this treat-
ment are reported in many studies (Ramaswami et al., 1998;
Tanaka et al., 2003). R-hGH is well tolerated and effective in
improving growth in Hch patients, particularly when started early
(Pinto et al., 2014; Massart et al., 2015). The mechanism of action
of r-hGH does not directly act on FGFR3 signaling pathways;
rather, r-hGH stimulates the growth of the cartilage through its
pro-anabolic properties (Fig. 5C-7) (Wang et al., 2004). Addition-
al studies are necessary to establish safety of r-hGH and its bene-
fits to achieving adult height and body proportion.

Approaches to Treat Achondroplasia

Treatment of the developmental complications of Ach involves
symptomatic management, surgical intervention, and lifelong
follow-up care. Health problems commonly associated with Ach
include: cervico medullary compression, which can present in the
first few months of life due to a reduced size of the foramen mag-
num; recurrent otitis media, which is common in young patients
and needs to be treated to prevent conductive hearing loss;
restrictive respiratory insufficiency, due to small chest size; and
in adults, lumbar spinal compression (Fig. 3).

To treat the short stature and the impairment of linear growth,
several surgical procedures (described above) have been used, and
nonsurgical strategies are being evaluated. The first therapeutic
strategy offered to Ach patients was treatment with r-hGH. An
increase in growth (height) velocity was reported following short
term r-hGH treatment, but no clear benefit was established for
long-term treatment (Miccoli et al., 2016). However, the effect on
body proportion is still unknown and currently the use of r-hGH
to treat Ach is not routinely recommended. Current pharmacolog-
ical approaches are aimed at directly blocking FGFR3 activation
or regulating other signaling pathways that control chondrocyte
proliferation and differentiation.

Therapies Aimed at FGFR3 Signaling

Many nonsurgical strategies aimed at reducing excessive activa-
tion of FGFR3 have been proposed to stimulate linear bone
growth in Ach. Many strategies have been borrowed conceptually
from the oncological field, which is not surprising because the
genetic lesions leading to FGFR3-related skeletal disorders are
identical to those found in FGFR3-driven cancers (e.g., bladder
tumors, multiple myeloma) (Chesi et al., 1997; Cappellen et al.,
1999; Turner and Grose, 2010; Patani et al., 2016). Several stud-
ies have focused on FGFR-selective small molecule tyrosine
kinase inhibitors (TKI) to directly reduce the high tyrosine kinase
activity resulting from mutations in FGFR3 (Fig. 5C-3). Thera-
peutic efficacy of the TKI CHIR-258 was demonstrated in a xeno-
graft mouse model of FGFR3-induced multiple myeloma (MM)
(Trudel et al., 2005) and A31 was effective in increasing the
growth of femur explants from Fgfr3(p.Tyr367Cys) mutant mice
(Jonquoy et al., 2012).

Two other FGFR TKIs, PD173074 and SU5402, are also able to
inhibit the growth and induce apoptosis of MM cells. However,
these TKIs are not selective for FGFR3 (Mohammadi et al., 1997;

Dimitroff et al., 1999). Recently, NVP-BGJ398, a TKI more selec-
tive for FGFR3 over others FGFRs (Gudernova et al., 2016) was
used in preclinical murine models for treating several FGFR-
related cancers such as malignant rhabdoid tumors (Wohrle et al.,
2013b), hepatocellular carcinoma (Scheller et al., 2015), and skel-
etal disorders including FGF23-mediated hypophosphatemic rick-
ets (Wohrle et al., 2013a) and Ach (Komla-Ebri et al., 2016).
Importantly, NVP-BGJ398 was shown in vivo to reduce
FGFR3(p.Tyr367Cys) activation and improve the skeletal pheno-
type of Ach-like mice (Komla-Ebri et al., 2016). Following safety
and pharmacokinetic studies, this compound may be appropriate
for evaluation in clinical trials with Ach patients.

Another approach to inhibit FGFR3 consists of using monoclo-
nal antibodies to target the extracellular part of the receptor to
block ligand binding or to use soluble decoy receptors which can
bind and sequester FGF ligands, preventing them from interact-
ing with endogenous receptors (Fig. 5C-2). Several studies dem-
onstrated that FGFR3-specific monoclonal antibodies were highly
efficient in slowing the growth of various bladder cancer cell
lines and were able to reduce the growth of FGFR3-dependent
tumors in mice and FGFR3-expressing tumor xenografts (Rau-
chenberger et al., 2003; Martinez-Torrecuadrada et al., 2005; Tru-
del et al., 2006; Gorbenko et al., 2009; Qing et al., 2009; Gust
et al., 2013; Yin et al., 2016). FGFR3-specific monoclonal anti-
bodies have not yet been evaluated in vivo in mouse models for
Ach.

Soluble FGFR3 extracellular domain decoy receptors (sFGFR3)
were recently designed with the objective of binding and seques-
tering available FGF to compete with endogenous FGFR3 binding
to FGF ligands that functionally regulate chondrogenesis (Fig.
5C-1) (Liu et al., 2002; Ohbayashi et al., 2002; Hung et al., 2007;
Liu et al., 2007; Garcia et al., 2013). Subcutaneous injections of
recombinant sFGFR3 into a transgenic mouse model for Ach
(Col2a1 promoter driving expression of FGFR3(p.Gly380Arg),
Fgfr3Ach/1 mice) (Naski et al., 1998), was found to decrease mor-
tality and improve skeletal growth (Garcia et al., 2013).

Targeting non-FGF Signaling Pathways that Control
Chondrocyte Proliferation and Differentiation

Many signaling molecules and transcription factors are involved
during growth plate development and maturation stages (Fig. 2).
In Ach, the balance between chondrocyte proliferation and differ-
entiation is severely disrupted. Among the factors playing a cru-
cial role, PTH/PTHrP (PTHLH) is a well-studied regulator of
growth plate chondrocyte proliferation and differentiation (Fig.
5C-6). To correct the proliferation and differentiation defect in
Ach, systemic intermittent PTH (1-34) injections were adminis-
tered to Fgfr3K544E/1 mice. These preclinical studies showed res-
cue of the retarded skeletal development in these mice (Xie et al.,
2012). However, clinical use of PTH (1-34) (Teriparatide) is limit-
ed to 2 years in humans for treatment of osteoporosis (Hodsman
et al., 2005). Use of teriparatide in humans to treat Ach will
require long-term administration and thus new clinical trials to
evaluate safety and efficacy.

Recently, others strategies have emerged using drugs currently
used for nonskeletal disorders. The first example is Meclozine, an
over the-counter H1 receptor inhibitor used to treat motion sick-
ness. In various cell lines, Meclozine is able to promote chondro-
cyte proliferation and differentiation and attenuate ERK1/2
phosphorylation (Fig. 5C-5) (Matsushita et al., 2013). In ex vivo

D
E

V
E

L
O

P
M

E
N

T
A

L
 D

Y
N

A
M

IC
S

ACHONDROPLASIA 301



culture, Meclozine increases longitudinal growth of embryonic
normal and Fgfr3Ach/1 tibiae explants. Oral administration of
Meclozine to Fgfr3Ach/1 mice increased longitudinal bone growth
but failed to increase the size of the foramen magnum and lum-
bar spinal canal (Matsushita et al., 2015). Future studies will
require histological analyses of the growth plate to confirm res-
cue of the growth plate defect.

A second example is statins, a class of cholesterol-lowering
drugs (Fig. 5C-8). Addition of statins to culture media rescued the
defective chondrogenesis seen in chondrocytes derived from
induced pluripotent stem cells (iPS) from Ach patients, and cor-
rected the skeletal phenotype of Fgfr3Ach/1 mice in vivo (Yama-
shita et al., 2014). However, controversy remains regarding the
use of statins as a therapeutic approach for Ach, as recent studies
showed that statin treatment retarded cartilage development and
reduced the expression of the principal regulators of growth plate
cartilage (Wu and De Luca, 2004; Woods et al., 2009). The mech-
anism by which statins could modify bone growth in Ach needs
further investigation (Bush et al., 2015).

C-Type Natriuretic Peptide

The most promising therapy thus far for treatment of Ach is the
use of a stabilized form of C-type natriuretic peptide (CNP) called
BMN-111 (Lorget et al., 2012; Wendt et al., 2015). CNP and its
receptor, natriuretic peptide receptor B (Npr2, guanylyl cyclase B)
are recognized as important regulators of longitudinal bone
growth (Chusho et al., 2001). Loss-of-function mutations in Npr2
are responsible for acromesomelic dysplasia Maroteaux type, a
disproportionate dwarfism in humans (Bartels et al., 2004) and
heterozygous inactivating mutations in Npr2 are associated with
short stature (Olney et al., 2006). Mutant mice with a disruption
of CNP (Nppc-/-) also show disproportionate dwarfism with short
limbs (Chusho et al., 2001). Conversely, tall stature has been
reported in a patient heterozygous for an activating NPR2 muta-
tion (Hannema et al., 2013) and skeletal overgrowth has been
observed in patients that overexpress CNP caused by a balanced
translocation (Bocciardi et al., 2007; Moncla et al., 2007). The
same phenotype was reported in transgenic mice overexpressing
brain natriuretic peptide (BNP) (Suda et al., 1998). Of interest,
CNP over-expression in cartilage or continuous delivery of CNP
through intravenous infusion normalizes the dwarfism of
Fgfr3Ach/1 mice (Yasoda et al., 2004, 2009), suggesting that CNP
administration is a potential strategy to treat Ach.

CNP signals through NPR2 in chondrocytes and inhibits the
MAPK signaling pathway at the level of RAF1 (Fig. 5C-4) (Yasoda
et al., 2004; Krejci et al., 2005; Geister et al., 2013). The role of
the MAPK pathway in mediating FGFR3 activity is illustrated by
the dwarfism of mice with constitutive activation of extracellular
signal regulated kinases 1 (ERK1/MEK1) and conversely by the
overgrowth of long bones of mice with ERK1/2 inactivation
(Sebastian et al., 2011). Several studies have attempted to explain
the signaling cascades triggered by CNP in the growth plate.
NPR2/CNP-induced cGMP activates cyclic GMP-dependent pro-
tein kinase II (cGKII, encoded by PRKG2) and p38 (MAPK14).
MAPK14 functionally antagonizes RAF1 activation of MEK
(MAP2K1), which is a critical pathway that regulates chondro-
cyte hypertrophy (Murakami et al., 2004; Ozasa et al., 2005;
Agoston et al., 2007; Hutchison, 2012; Peake et al., 2014). Signal-
ing by FGF ligands through FGFR3 is functionally antagonized
by CNP (BMN-111) signaling through NPR2, which decreases

ERK1/2 phosphorylation in human chondrocytes and enhances
the rate of chondrocyte hypertrophy and skeletal growth in a
mouse model of Ach (Fgfr3Y367C/1) (Lorget et al., 2012). The
putative hemodynamic effects of BMN-111 were tested in normal
juvenile cynomolgus monkeys. Echocardiographic parameters
were unaffected at any dose of BMN-111, and there were no clin-
ical signs of hypotension or distress at any time during the treat-
ment (Wendt et al., 2015). A phase 2 clinical trial with BMN-111
(Vosoritide) is currently under way for the treatment of Ach
(https://clinicaltrials.gov/ct2/show/NCT02055157). A phase 3 clini-
cal trial has also been initiated.

Conclusion and Future Directions

Considerable progress has been made during the past 20 years in
understanding FGFR3-related disorders as well in developing a
rationale for effective therapeutic strategies to treat FGFR3-
associated bone growth defects. Although there has been some
success in developing therapies, a clear challenge for the future
will be to further improve the care and treatment of children and
adults with Ach. As reviewed here, there are several novel thera-
peutic strategies that need to be considered in the future. Addi-
tionally, it will be important to investigate the potential for
synergy of two or more pharmacological inhibitors of FGFR3 and
its signaling pathways, which could lead to more effective treat-
ments for Ach patients. Progress in developing therapies for Ach
will also contribute to the treatment of other diseases such as
cancer (multiple myeloma, lung adenocarcinoma, bladder, gas-
tric, colorectal cancers), ostheoarthitis, and aging that result from
activation of FGF signaling pathways.

Further analyses and understanding of FGFR3 downstream sig-
naling pathways in the growth plate, of mechanisms that regulate
communication between cortical and trabecular bone and the
growth plate, and mechanisms by which endocrine signals inter-
act with FGFR3 signaling pathways will likely lead to additional
therapeutic strategies. Finally, studies of the role of FGFR3 in
extra skeletal tissue (e.g., heart, inner ear, lung) could explain
some of the clinical features associated with mutations in FGFR3
and will need to be considered during clinical trials for Ach.
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