Design of a Phase 1/2 Open-Label, Dose-Escalation Study of the Safety and Efficacy of Gene Therapy in Adults with Classic Congenital Adrenal Hyperplasia (CAH) Due to 21-Hydroxylase Deficiency through Administration of an Adeno-Associated Virus (AAV) Serotype 5-Based Recombinant Vector Encoding the Human CYP21A2 Gene

Deborah P. Merke¹, Richard J. Auchus², Kyriakie Sarafoglou³, Mitchell E. Geffner⁴, Mimi S. Kim⁴, Ellen W. Seely⁵, Rafael Escandon⁶, Kamal N. Bharucha⁶, Adam J. Shaywitz⁶, Rachel Eclov⁶, Clayton Beard⁶, Sophie Le Fur⁷, Pierre Bougnères⁷

¹National Institutes of Health; ²University of Minnesota; ³University of Minnesota; ⁴Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California; ⁵Brigham and Women's Hospital Los Angeles, Keck School; ⁶Adrenas Therapeutics, Inc., USA; ⁷Adrenas and Therapy Design Consulting, France

DISEASE BACKGROUND

- The most common type of CAH is due to 21-OHD caused by pathogenic variants in the CYP21A2 gene
- Classic (severe) CAH requires lifetime GC and/or MC replacement
- Disease- and treatment-related comorbidities include life-threatening adrenal crises, impaired growth and development during childhood, adult short stature, female virilization, subfertility in both sexes, obesity and cardiovascular risk factors, and decreased bone mineral density¹⁻⁴
- All-cause mortality rate in classic CAH patients has been reported as > 5 times that of controls, adjusted for age and sex⁵
- Gene replacement therapy with BBP-631 is intended to restore adrenocortical cell function with the potential to provide an endogenous physiologic pathway for GC and MC synthesis

- BBP-631 is a gene therapy candidate composed of a non-replicating rAAV5 vector containing ssDNA of the human *CYP21A2* transgene
- » AAV gene therapies have been used in clinical trials in > 3000 patients across a 20-year span, suggesting that AAV-mediated gene therapy may be a welltolerated, safe, and efficacious modality to address unmet clinical need⁶⁻⁸
- Single-dose IV infusion with BBP-631 is expected to deliver the CYP21A2 transgene to adrenal gland cells enabling 21-OH enzyme production (Figure 1)
- *CYP21A2* gene replacement by BBP-631-mediated delivery is intended to restore physiologic endogenous cortisol and/or aldosterone biosynthesis and therefore:
- » Decrease or eliminate reliance on exogenous GC, thereby reducing sequelae of supraphysiologic GC
- » Reduce the hyperandrogenism associated with 21-OHD » Reduce the risk of adrenal crises
- » Reduce patient burden and non-compliance related to daily dosing of GC and/or MC

PROOF OF CONCEPT IN ANIMALS

Mouse Model of CAH

- The H-2^{aw18} (Cyp21^{-/-}) mouse is an animal model of human CAH due to 21-OHD, which mimics a key pathophysiologic feature of CAH, ie, presenting with failure-to-thrive that leads to postnatal morbidity due to GC and MC deficiency⁹⁻¹⁰
- Single IV administration of a functional copy of the human CYP21A2 gene led to early and sustained disease rescue of the Cyp21^{-/-} mice (Figure 2A) accompanied by:
- » Reduction of urinary progesterone levels across 10 weeks, consistent with restoration of 21-hydroxylation of progesterone in the pathway to corticosterone, the major GC in mice
- » Reduction of renin expression in the kidney, suggesting improvement in MC function » Dose-dependent detection of vector genomes, human CYP21A2 mRNA, and human 21-OH protein in the
- adrenal gland (Figure 2B)

Figure 2: Identification of Biologically Active Doses in Mice and NHPs Supports the BBP-631 Starting Dose in the Phase 1/2 Clinical Study

Abbreviations: 21-OH: 21-hydroxylase; 21-OHD: 21-hydroxylase deficiency; 4W: 4 weeks; A4: androstenedione; AAV: adeno-associated virus; ACTH: adrenocorticotropic hormone; AE: adverse event; CAH: congenital adrenal hyperplasia; DNA: deoxyribonucleic acid; dsDNA: double-stranded DNA; DSMC: Data Safety Monitoring Committee; g: gram; GC: glucocorticoid; gDNA: genomic DNA; HC: hydrocortisone; HPA: hypothalamic-pituitary-adrenal; HPG: hypothalamicpituitary-gonadal; kg: kilogram; IV: intravenous; MC: mineralocorticoid; µg: microgram; mRNA: messenger ribonucleic acid; NHP: non-human primate; PE: physical examination; rAAV5: recombinant adeno-associated virus serotype 5; ssDNA: singlestranded DNA; TART: testicular adrenal rest tumor; ULN: upper limit of normal; vg: vector genomes; VS: vital signs; w: weeks

Presented at ENDO 2021

GENE REPLACEMENT THERAPY

- 3. Nuclear entry
- 4. Conversion to dsDNA 8. Active protein
- 7. Protein folding and trafficking

Non-Human Primates

- Persistent, dose-dependent expression of human 21-OH protein was observed in adrenal glands of NHPs administered 1 dose of BBP-631 (Figure 2C)
- The amount of human 21-OH protein produced, expressed as percentage of endogenous 21-OH in NHPs, suggests the potential for clinically meaningful disease impact in patients with classic CAH

Acknowledgments: We wish to acknowledge Dr. David Torpy and his team at the Royal Adelaide Hospital for contributions to the BBP-631 clinical development program and Dr. Smita Jha and Elizabeth Joyal, NP for contributions to the design of the CAH-301 study.

References: 1) Bonfig, Curr Opin Endocrinol Diabetes Obes, 2017; 2) Falhammar, J Clin Endocrinol Metab, 2014; 3) Merke, N Engl J Med, 2020; 4) Reisch, Exp Clin Endocrinol Diabetes, 2019; 5) Jenkins-Jones, Eur J Endocrinol, 2018; 6) Miesbach, Blood, 2018; 7) Pasi, N Engl J Med, 2020; 8) Rangarajan, N Engl J Med, 2017; 9) Gotoh, Endocrinology, 1988; 10) Perdomini, Gene Ther, 2017.

PHASE 1/2 CLI	NICA
 Study Design Phase 1/2, first-in-human, open-label, dose-escalation study in adults with classic CAH due to 21-OHD who will be monitored acutely and long-term for safety, tolerability, and efficacy over 5 years (Figure 3) Baseline (5-day period) with a detailed assessment of diurnal hormonal profile (including 17-OHP and A4), cortisol clearance, ACTH-stimulation testing, renin and aldosterone, and other exploratory hormones The protocol permits home assessments to minimize travel burden and mitigate patient risk 	Fig.
 Dose Escalation Design Three dose levels of BBP-631 are planned for the study (Figure 4): Level 1: 1.5 × 10¹³ vg/kg Level 2: 3.0 × 10¹³ vg/kg Level 3: 6.0 × 10¹³ vg/kg Study participants will receive only 1 dose of BBP-631 DSMC will review safety data before dose escalation or dose expansion A tacrolimus regimen will be used to prevent or dampen potential immune responses that have been observed with other AAV-based therapies⁶⁻⁸ 	
 Patient Population (Key Eligibility Criteria) Adult male and non-pregnant females with classic CAH (simple virilizing or salt-wasting) due to 21-OHD Screening/baseline 17-OHP levels > 5-10 × ULN and < 40 × ULN Stable oral HC regimen as the only GC maintenance therapy Naïve to prior gene therapy or AAV-mediated therapy Negative for anti-AAV5 antibodies No history of adrenalectomy and has no significant liver disease 	
 Key Safety and Efficacy Endpoints for Selection of Optimum Dose AEs, clinical laboratory measures (chemistry, hematology, urinalysis), VS, and PE Levels of endogenous cortisol (pre- and post-ACTH stimulation), 17-OHP, 	Pat
 A4, and other hormones associated with the HPA and HPG axes Levels of renin and aldosterone Changes in HC and MC use Quality-of-life assessments measuring physical and physiological impacts of the hormonal imbalance 	Pat Pat

SUMMARY

- Study CAH-301 is the first study to use AAV-mediated gene transfer for investigational treatment of adults with classic CAH due to 21-OHD
- Endpoints were selected to provide robust evidence of activity of BBP-631
- The potential for clinical benefit in patients with classic CAH who receive BBP-631 is supported by: »Successful, durable CYP21A2 gene transfer in a mouse model
- »NHP data showing robust transgene mRNA expression and transduction in the adrenal gland, leading to sustained expression of the human 21-OH protein
- » Emerging clinical evidence of tolerability, safety, and efficacy using AAV as the modality for gene transfer
- Study CAH-301 is planned to start in 2021 and will be enrolling at multiple centers across the United States (NCT04783181)

